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I
n 2008, to the consternation of some,
one of the editors of this special issue
on the “Chemical Physics of Protein
Folding,” was quoted as saying, “What

was called the protein folding problem 20
years ago is solved” (1). One purpose of this
special issue is to drive home this point. The
other, more important purpose is to illus-
trate how workers on the protein folding
problem, by moving beyond their early ob-
session with seeming paradoxes (2), are
developing a quantitative understanding
of how the simpler biological structures
assemble both in vitro and in vivo. The
emerging quantitative understanding reveals
simultaneously the richness of folding phe-
nomena and the elegant simplicity of the
underlying principles of spontaneous bio-
molecular assembly. The appreciation of
these contrasting aspects of the folding
problem has come about through the co-
operation of theorists and experimentalists,
a theme common to all the contributions to
this special issue. Although the basic ideas
about the folding energy landscape have
turned out to be quite simple, entering
even into some undergraduate textbooks (3),
exploring their consequences in real systems
has required painstaking intellectual analy-
sis, as well as detailed computer simulations
and experiments that still stretch the bounds
of what is feasible. The backgrounds of
the contributors to this issue reflect the
breadth of the folding field and range from
computer science and theoretical physics to
molecular biology and organic chemistry.
A great deal of the progress in the field can
thus be traced to a fairly successful effort
to develop a common language and con-
ceptual framework for describing folding.
The conceptual framework is provided

by energy landscape theory, which
describes the diversity of structural possi-
bilities in statistical mechanical terms. The
main paradoxes of folding are resolved by
the consistency principle (4) or, more
generally, by the principle of minimal
frustration (5), which quantifies the
dominance of interactions stabilizing the
specific native structure over other inter-
actions that would favor nonnative, topo-

logically distinct traps. In other words, the
energy landscape of evolved proteins ap-
pears to be funneled (6, 7).
The overall funneled nature of the folding

landscape provides a first guess of how
folding begins and continues: Proteins fold
by assembling primarily native substructures,
whereas they only transiently sample mis-
folds. This insight explains the success of
protein engineering in providing detailed
structural information on the transition state
ensemble, the so-called “φ-value analysis”
(8, 9). In some cases, changing solution
conditions changes the position of the tran-
sition state along the reaction coordinate,
such that φ-value studies can even tell us in
what order native parts assemble along the
dominant transition path.
The ensemble nature of the transition

states was the first clue that mechanistic
complexity still remains on funneled
landscapes. Multiple choices of a precise
folding mechanism are possible, and sev-
eral experimental studies herein demon-
strate the malleability of specific folding
mechanisms for proteins of either related
structure or related sequence; on a fun-
neled landscape, many roads lead to
Rome (10, 11). After a molecule embarks
on a route, even on a funneled energy
landscape, assembly may not be com-
pletely straightforward. Occasionally,
a greedy attempt to make native contacts
early on can lead to topological traps (12);
in that case, some early native interactions
must be undone to allow complete folding
and one must backtrack (13). Also, evo-
lution toward a funneled landscape cannot
repeal the universal character of the
physics of specific molecular interactions;
thus, no real folding landscape is ever
perfectly funneled. If the nonnative inter-
actions are fairly weak, they just provide
a source of “friction,” a topic quantified
here in several papers (14, 15). If the
nonnative interactions become stronger, as
theory predicts, frustrated interactions can
allow specific intermediates to form with
substantial nonnative contacts along with
some native structure. This phenomenon
also receives attention here (16).

Many of the most intriguing questions of
mechanism can only be addressed feebly at
the level of ensemble-averaged experi-
ments; thus, folding science has called forth
some extremely challenging experiments in
which molecules are studied individually
one at a time (17–19). On the computa-
tional side, although effective theories of
folding can often use simplified models that
make interesting and surprising predictions
(20, 21), many questions of detail can
now be answered satisfactorily with fully
atomistic simulations that challenge com-
putational power to the limit (22–24).
As the title of this special issue suggests,

most of the contributions focus on explor-
ing the general principles of folding. These
principles emerge as clearly in test tube
studies as they do in the cell. However, the
cell provides its own challenges to folding
science. The effects of heterogeneous in-
tracellular environments on folding land-
scapes (25) are beginning to be explored.
Also, despite the inborn tendency of pro-
teins to do the right thing (arising from the
minimal frustration principle), alternate
folding, misfolding, and aggregation for
a few proteins do lead to pathology, a topic
explored in this issue (26) with the super-
oxide dismutase system that is involved in
amyotrophic lateral sclerosis.
The topics discussed in this issue are only

a small part of the work in the folding field.
Nevertheless, they make clear that protein
folding is a vibrant, living, interdisciplinary
part of the natural sciences. We hope this
snapshot of the field will encourage others to
bring new approaches to contribute to our
understanding of biomolecular assembly and
encourage the use of the ideas and strategies
that have already proved successful in
the study of assembling the simplest bio-
molecules to look at the full complexity of
living systems at higher levels of complexity.
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